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ABSTRACT  

Landslides pose significant negative impact on people lives, infrastructures, so-
ciety, and environment. To reduce the consequences of this natural hazard, spa-
tial and temporal estimations of failure are essential. Yet substantial uncertain-
ties are associated with these assessments. This study is motivated by the need 
to reduce the uncertainty in soil hydraulic parameters estimations for a better 
landslide susceptibility and hazard assessment. The research highlights the vital 
role of diminishing uncertainties in soil hydraulic parameters leading to better 
estimation of hydraulic conductivity, infiltration, pore pressure distribution and 
soil strength, therefore improved temporal and spatial slope instability forecast-
ing. The study focuses on a case study in the proximity of Meråker in central 
Norway because of the complex morphology and geology of the area as well as 
the available instrumented slopes to measure the soil suction and volumetric 
water content throughout the year. By utilizing the high-resolution rainfall data 
from the weather stations in the area together with sensor data, a sequential 
uncertainty reduction of soil hydraulic properties was implemented with the 
Ensemble Kalman Filter Method (EnKF) and PLAXIS 2D software. A Python 
script is employed to implement EnKF and automated Plaxis numerical simu-
lations to assimilate data from sensors and calibrate hydraulic parameters. Pre-
liminary findings reveal considerable reduction in soil hydraulic properties un-
certainty leading to improved performance of regional slope stability analysis 
and ultimately contribute to better geohazard management, effective mitigation 
strategies and fortifying the community resilience. 
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1. INTRODUCTION 

Spatial and temporal prediction of water-induced landslides are crucial to pro-
tect people’s lives and reduce the socioeconomical consequences through im-
proved spatial planning, engineering protection measures, and early warning 
systems. In this regard understanding the soil hydraulic properties is the key 
factor to estimate the water infiltration, ground water condition, soil strength 
reduction and therefore slope stability. Despite of the importance of soil hy-
draulic parameters, due to the inherent spatial variability and costly and time 
consuming soil investigation measures it is common that the hydraulic param-
eters are associated with great uncertainties. In this paper, Ensemble Kalman 
Filter (EnKF) data assimilation method is employed together with Van Genuch-
ten unsaturated infiltration theory using PLAXIS 2D to calibrate and update the 
soil hydraulic parameters continuously, leading to more precise estimation of 
uncertain hydraulic parameters. The EnKF assimilation of data and dynamic 
updating features make it exceptional tool for integration of real-time sensor 
data with conventional models such as Van Genuchten model to evaluate the 
ground water condition in response to rainfall. Moreover, employing novel data 
assimilation methods such as EnKF is first step to pave the road for further 
incorporation of innovative techniques in monitoring and early warning sys-
tems for water-induced landslides. 

2. METHOD 

The study utilizes a finite element PLAXIS 2D model combined with EnKF 
data assimilation algorithm to calibrate the three uncertain soil hydraulic pa-
rameters namely Van Genuchten SWCC fitting parameters α, n, and saturated 
hydraulic conductivity Ks. The sensors in the study area record volumetric wa-
ter content, suction and temperature. A slope similar to the instrumented slope 
is modeled in PLAXIS 2D and using the available geotechnical and hydrologi-
cal data, infiltration analysis is performed by assuming a probability distribu-
tion for unknown hydraulic parameters α, n and Ks. The results of the PLAXIS 
2D model is compared to the actual sensor data in the field and using the EnKF 
the initial assumptions are calibrated. After updating the parameters with 10 
over the period of 9 days, the goals is to reduce uncertainty associated with 
initial guesses and obtain more accurate parameters probability distribution. 
Subsequently these hydraulic parameters can be used to perform a slope stabil-
ity analysis and enhance the accuracy of the deployed early warning systems in 
the case study area. 

Instrumentation and study area 

The instrumented area located along the Stjørdal river in Trøndelag, central 
Norway. Area covers almost 200 km2 area and consist of complex geological 
formation according to Norway National Geological Survey (NGU) shown in 
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Figure 1. Two locations in the area are chosen to be instrumented with sensors 
shown in Figure 1. 

At each spot, sensors are located at two proximate locations and three depths in 
Figure 2. This study focuses on sensor data from “Location 2” in Figure 1, 
where the soil Volumetric Water Content (VWC) has been measured at depths 
of 0.3, 0.5 and 0.9 m from the 

 
Figure 1. (a) Study area, (b) Geological formation of the area, (c) Two selected moni-
toring locations. [1] 

ground surface, and is accessible in 15-minute resolution. A weather station to 
measure the daily rainfall also planted at the area.  

Annual rainfall of 964 mm to 1205 mm [2] has been registered in the case study 
area. Soil conditions are characteristic for steep areas with inclination greater 
than 25 degrees and shallow dept to bedrock with soil thickness varying be-
tween 0.5 m to 10 m above the bedrock [1]. Geotechnical soil properties are 
presented in [1] after literature review and sets of laboratory tests from the soil 
samples. Soil friction angle and cohesion are measured as 38⸰ and 5.5 kPa re-
spectively and the soil is classified as silty sand. This characteristic for moraine, 
which is a well-graded soil type consisting of silt, sand, and gravel. 

Ensemble Kalman Filter (EnKF) 

The main objective of data assimilation is to successively adjust the state of 
knowledge about unknown parameter distribution based on the initial assumed 
distribution, model predictions, and incoming measured state or parameter. 
Kalman Filter (KF) is one of the well-known data assimilation systems, opti-
mizing the accuracy of the system by processing and adjusting the unknown 
parameters [3]. Ensemble Kalman Filter (EnKF) is the extension of KF, appli-
cable in processing nonlinear systems by employing the set of samples of un-
known parameters known as ensembles to approximate the state or parameter’s 
distribution and therefore optimizing the accuracy of the model [4]. 
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Figure 2. Study area [1] (a) Soil layering and sensor locations, (b) Two sensors, 

weather station and trial pit locations, (c) Monitoring point and (d) weather station 

Comprehensive notation and formulation of the EnKF is provided in [5]. Fol-
lowing the same notation, EnKF is formulated and incorporated in this study. 

Let us define the output of a model that aims to capture the considered phenom-
enon (e.g., rainfall infiltration) as g(z). The input to the model, z, is a matrix 
that combines model state (estimation), 𝒙𝒙, and the unknown model parameters 
(forward calculation input), 𝜽𝜽 

𝒚𝒚 = 𝑔𝑔(𝒛𝒛) 𝐸𝐸𝐸𝐸(1) 

𝒛𝒛 = [𝐱𝐱,𝛉𝛉]𝑇𝑇 𝐸𝐸𝐸𝐸(2) 

Measurement matrix d is defined as observation of the model output y with the 
addition of a measurement error e. 

𝒅𝒅 = 𝒚𝒚 + 𝒆𝒆 𝐸𝐸𝐸𝐸(3) 

In order to get the close to reality estimations the posterior likelihood of the 
model parameters given the observations, f (z | d), is maximized, and this can 
be done by minimizing the cost function [5]. 

𝐽𝐽(𝒛𝒛) = �𝒛𝒛 − 𝒛𝒛𝒇𝒇�𝑇𝑇𝑪𝑪𝒛𝒛𝒛𝒛−𝟏𝟏�𝒛𝒛 − 𝒛𝒛𝒇𝒇�+ (𝑔𝑔(𝒛𝒛) − 𝒅𝒅)𝑇𝑇𝑪𝑪𝒅𝒅𝒅𝒅−𝟏𝟏(𝑔𝑔(𝒛𝒛) − 𝒅𝒅) 𝐸𝐸𝐸𝐸(4) 

Czz, zf and Cdd represent error covariance of z, previous estimation of model 
parameters and error covariance of measurements respectively. The state-pa-
rameter vector is updated by maximizing the posterior likelihood [5] as follows:  

𝒛𝒛𝒂𝒂 = 𝒛𝒛𝒇𝒇 + 𝑲𝑲�𝒅𝒅− 𝑔𝑔(𝒛𝒛)� 𝐸𝐸𝐸𝐸(5) 



 A. Vakilinezhad, S.O.P. Pedersen, and I. Depina 

 19th Nordic Geotechnical Meeting – Göteborg 2024 
  

𝑪𝑪𝒛𝒛𝒛𝒛𝒂𝒂 = (𝑰𝑰 − 𝑲𝑲𝑲𝑲)𝑪𝑪𝒛𝒛𝒛𝒛 𝐸𝐸𝐸𝐸(6) 

The “a” superscript represents the new estimation. New parameter estimation 
and error covariance estimation can be obtained through equation 5 and 6 using 
previous estimation and K matrix which is known as “Kalman gain”. 

𝑲𝑲 = 𝑪𝑪𝒛𝒛𝒛𝒛𝑮𝑮�𝑮𝑮𝑪𝑪𝒛𝒛𝒛𝒛𝑮𝑮𝑻𝑻 − 𝑪𝑪𝒛𝒛𝒛𝒛�
−𝟏𝟏 𝐸𝐸𝐸𝐸(7) 

For each ensemble the equations can be written: 

𝑧𝑧𝑖𝑖𝑎𝑎 = 𝑧𝑧𝑖𝑖
𝑓𝑓 + 𝑲𝑲𝒆𝒆 �𝒅𝒅𝒊𝒊 − 𝑔𝑔�𝑧𝑧𝑖𝑖

𝑓𝑓�� 𝐸𝐸𝐸𝐸(8) 

𝑲𝑲𝒆𝒆 = 𝑪𝑪𝒛𝒛𝒛𝒛𝒆𝒆 𝑮𝑮�𝑮𝑮𝑪𝑪𝒛𝒛𝒛𝒛𝒆𝒆 𝑮𝑮𝑻𝑻 − 𝑪𝑪𝒅𝒅𝒅𝒅�
−𝟏𝟏 𝐸𝐸𝐸𝐸(9) 

di = d + εi and 𝑪𝑪𝒛𝒛𝒛𝒛𝒆𝒆  are the measurement matrix with noise and combined co-
variance matrix respectively. 𝑪𝑪𝒛𝒛𝒛𝒛𝒆𝒆  is calculated using equations 10, 11 and 12 
by first finding ensemble members mean and differentiating each ensemble 
member from the mean value. 

𝒁𝒁𝒕𝒕
𝒇𝒇��� = 𝒁𝒁𝒕𝒕

𝒇𝒇𝑰𝑰𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸(10) 

𝒁𝒁𝒇𝒇′ = 𝒁𝒁𝒇𝒇𝑻𝑻 − 𝒁𝒁𝒕𝒕
𝒇𝒇��� 𝐸𝐸𝐸𝐸(11) 

𝑪𝑪𝒛𝒛𝒛𝒛𝒆𝒆 =
𝒁𝒁𝒇𝒇′ �𝒁𝒁𝒇𝒇′ �

𝑇𝑇

𝑁𝑁𝑁𝑁 − 1
 𝐸𝐸𝐸𝐸(12) 

The measurement matrix is defined as D and it is integrated in the main updat-
ing function as shown in equation 14. 

𝑫𝑫𝑡𝑡 = �𝒅𝒅1,𝑡𝑡,𝒅𝒅2,𝑡𝑡,𝒅𝒅3,𝑡𝑡, … ,𝒅𝒅𝑁𝑁𝑁𝑁,𝑡𝑡� 𝐸𝐸𝐸𝐸(13) 

𝒁𝒁𝒕𝒕𝒂𝒂 = 𝒁𝒁𝒕𝒕
𝒇𝒇 + 𝑪𝑪𝒛𝒛𝒛𝒛𝒆𝒆 𝑮𝑮𝑻𝑻�𝑮𝑮𝑪𝑪𝒛𝒛𝒛𝒛𝒆𝒆 𝑮𝑮𝑻𝑻 + 𝑪𝑪𝒅𝒅𝒅𝒅�

−1 �𝑫𝑫𝒕𝒕 − 𝑮𝑮𝒁𝒁𝒕𝒕
𝒇𝒇� 𝐸𝐸𝐸𝐸(14) 

In this study, 3 soil hydraulic parameters α, n and Ks, initially characterized by 
broad probability distribution are selected to be calibrated. Ne = 20 random 
samples from the distributions are attained and 20 analyses are performed to 
obtain ensemble of result, which consists of soil VWC predictions at measure-
ment locations. The estimations are updated by incorporating the measurements 
from sensors data with 0.02 error. This process is repeated for Nm = 9 days and 
at each day the analysis started with updated parameter probability distribution. 
Ideally, outputs of analyses should be converging the real sensor data from the 
field after iterations. 

FINITE ELEMENT PLAXIS 2D MODEL 

Python scripting is used to automate the PLAXIS 2D analysis. With 20 random 
estimations for three parameters the analysis should be performed 20 times for 
each day. 9 days of data are processed to be used in this study, resulting in total 
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180 PLAXIS 2D analyses, which would be time consuming to perform manu-
ally. 

The FEM model begins with defining the geometry and boundary conditions. 
The geometry of the model is illustrated in Figure 3 where a 35⸰ slope is created 
with 1.5 m depth to impermeable layer following the available information 
from trial pits in the field. Soil material is specified following the values pre-
sented by [1]. Three unknown parameters α, n and Ks are defined as a function 
to be updated at each iteration in the model. 

Similar to the sensor locations at 0.3, 0.5 and 0.9 m from the surface, three 
closest nodes on the mesh at the same depths are chosen to obtain the volumet-
ric water content after each analysis and compared to sensor values. The prob-
ability distribution function is updated and subsequently 20 new random sam-
ples of unknown parameters are generated o run the model. 

 
Figure 3. PLAXIS 2D model geometry 

3. RESULTS AND DISCUSSIONS 

Prior and posterior parameters estimations are presented in Table 1. After 9 
iterations, the posterior parameters are obtained. It is expected that the output 
of the FEM analysis resulted from posterior distributions would be getting 
closer to the sensor data if the model is able to capture the rainfall infiltration 
process. In Figure 4(a) the VWC recorded from sensors and simulation are 
shown by the blue line and black crosses respectively. At all depth the initial 
estimations result in wide range of VWC that converges after a couple of itera-
tions although at the beginning they are far from the real values. At 0.3 m the 
simulation results are capturing the VWC change after six days. At the 0.5 m 
depth similarly the simulation results are getting closer to sensor data after six 
days iteration. However, at 0.9 m depth the predicted VWC is not in good agree-
ment with the measured values. This can be due to the bias in the model, result-
ing from soil hydrological properties variability at deeper points and inaccurate 
implementation of initial and boundary conditions in our model. 

Figure 4(b) shows the hydraulic parameters estimations. The mean value is 
shown by blue line and orange dash lines show the one standard deviation from 
the mean. Saturated hydraulic conductivity shows acceptable convergence and 
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reach to an almost steady number with a small deviation from the mean in 9 
days. α parameter distribution hasn’t changes significantly after 9 iterations, 
however, the model is not dramatically  

  

  

  

 
Figure 4. (a) Sensor data and simulation results of VWC at 0.3, 0.5 and 0.9 m. (b) initial 
ksat, α and n parameter estimation and distributions in 9 days 

 

Table 1. Mean and standard deviation of the unknown parameters before and after 
EnKF 

 
Prior Values Posterior Values 

µα σα µn σn µKs σKs µα σα µn σn µKs σKs 

4.0 2.0 2.0 0.5 1.0 0.5 3.19 0.49 1.52 0.05 0.65 0.15 

 

(b) (a) 
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sensitive to α parameter since at shallower depth, the model shows acceptable 
performance and captures the actual VWC values although the α parameter 
wasn’t estimated well. On the other hand, the n parameter deviation from the 
mean is getting smaller after each iteration and shows acceptable convergence 
in 9 days. 

4. CONCLUSIONS 

Concluding the study, it is evident that the EnKF can be employed to automate 
calibration of numerical models with real-time data. In all scenarios the EnKF 
effectively reduced the uncertainty in initial estimated parameters. Moreover, 
efficiency of EnKF is showed at 0.3 m and 0.5 m depth where estimations and 
sensor values converged precisely. Although the results at 0.9 m depth are not 
as close as our expectations, these issues can be addressed by improving the 
model capability such as modelling layered soil that can capture the variation 
in hydraulic parameters, and improve modelling of boundary conditions, ac-
counting for evapotranspiration, and increasing the number or frequency of sen-
sor data. 
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