
19th Nordic Geotechnical Meeting – Göteborg 2024 

SOIL BEHAVIOUR TYPE CLASSIFICATION FOR 

TOTAL SOUNDINGS 

Sigurður Már Valsson1, Samson A. Degago2, Gudmund 

Reidar Eiksund3 

KEYWORDS  

Soil investigations, SBT classification, Total sounding, Machine learning 

ABSTRACT  

The total sounding method is the most frequently used site investigation 

method in Norway; however, only a few classification models exist to inter-

pret its results. This work proposes a new soil behavior type classification 

model for total soundings. A nearest neighbor classifier with the dynamic 

time warping distance is proposed, utilizing archived soundings and labora-

tory results from about 4500 boreholes across Norway. The presented model 

capability in classifying different soil types is shown to be promising. 

1. INTRODUCTION 

The Norwegian Total Sounding is a soil investigation method, developed in 

cooperation between the Research council of Norway, the Norwegian Public 

Roads Administration (NPRA), and the Norwegian Geotechnical Institute. It 

combines elements from the rotary pressure sounding and rock control drill-

ing and is usually conducted prior to any advanced test to get an idea of the 

soil stratification and depth to bedrock. This method has been the topic of pre-

vious papers in this conference (e.g. [1], [2] and [3]). In Sweden, selected 

phases from the total sounding have been combined with elements from Jb-2 

method to define the Jb-tot method (e.g. [1] and [4]). 

The total sounding has 5 phases: a normal-, increased rotation-, flushing-, 

hammering- and rock drilling phase. The method definition given in [5] gives 

details on when each phase shall be applied, but the first two are identical to 

the rotary pressure sounding procedure. Interpreting soil stratification with to-

tal soundings is done qualitatively based on visual observations of sounding 

profiles and examples of interpretation procedures are given in the method 
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definition. Despite its widespread use in Norway, only a handful of classifica-

tion models have so far been proposed (e.g. [3] and [6]). The penetration re-

sistance is measured at terrain level and includes both the tip-resistance as 

well as the accumulated rod friction from the surface to the tip. Resistance 

curves from all material types are found to span the entire presentation range 

for the push force 0-30kN, so defining models to identify materials based on 

resistance values alone is problematic. This paper defines a machine learning 

approach for Soil Behavior Type (SBT) classification for total soundings, us-

ing short intervals of the push force as a basis for the classification, combin-

ing the dynamic time warp distance [7] with a k-nearest neighbor classifier 

[8]. Field and laboratory results from over 4500 boreholes were collected to 

define the model, but this dataset was later reduced to representative sound-

ings for each class to make the model implementation more practical. 

2. DATASET 

Total sounding registrations were linked by depth to grain size analysis (GSA) 

results in the same position from numerous NPRA projects across Norway. 

The depth interval around each soil sample was selected as 1m giving about 

6500 short push force curve segments. Figures 1A and 1B show the locations 

of boreholes and how curves were extracted from depths around samples. 

  

Figure 1 A) Location of boreholes in the training set. B) Push force curve segments 

were collected in 1m intervals around sample depths. 

The classes are generated by interpreting GSA curves according to standard 

Norwegian practice [9]. The number of classes were reduced to a practical 

limit of 10 by only allowing main fractions (clay, silt, sand and gravel), possi-

bly with one neighboring secondary fraction as an adjective (e.g. clayey silt, 

gravel, gravelly sand). Curves corresponding to other labels are disregarded 
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(e.g. clayey sand, gravelly silt). About 4100 curves fit these criteria and are il-

lustrated in Figure 2 colored by class. 

 

Figure 2 GSA curves used to generate labels for the total sounding data. Each color is 

a model class and numbers in parenthesis show the number of samples for the class. 

Dynamic time warping (DTW) 

To compare curve segments from new tests to those in our dataset, the dy-

namic time warping (DTW) distance is used. This method was proposed by 

Vintsyuk [7] to identify similarities between audio signals for speech discrim-

ination. A key ingredient of DTW is the alignment process, where optimal 

alignment of series is identified before their similarity is evaluated. In the 

original context, the alignment process was useful to account for different dia-

lects or cadence in spoken language, but the algorithm has been found useful 

across a host of other domains, a few are listed in [10]. 

Let 𝑥 = ( 𝑥1,  𝑥2,⋯ ,  𝑥𝑚) and 𝑦 = ( 𝑦1,  𝑦2, ⋯ ,  𝑦𝑛) be two sequences that are 

not in sync, (Figure 3B upper). The warp cost between any element 𝑖 and 𝑗 of 

𝑥 and 𝑦 can be calculated as 

 𝑐𝑜𝑠𝑡(𝑖, 𝑗) =  ( 𝑥𝑖 −  𝑦𝑗)
2
 (1) 

for 𝑖 = 1,… ,𝑚 and 𝑗 = 1,… , 𝑛.  A D-matrix is constructed as the accumu-

lated cost between all elements in both series (Figure 3 A). The value of D for 

elements 𝑥𝑖 and  𝑦𝑗 is defined as 

 𝐷(𝑖, 𝑗) =  𝑚𝑖𝑛 {

 𝐷(𝑖, 𝑗 − 1)

𝐷(𝑖 − 1, 𝑗 − 1)

  𝐷(𝑖 − 1, 𝑗)
} + 𝑐𝑜𝑠𝑡(𝑖, 𝑗)  (2) 
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Eq. (2) defines a dynamic programming scheme, where the matrix is con-

structed from the lowest index (𝑖 = 𝑗 = 1) and expanded along either rows or 

columns towards the end. Backtracking indexes from the final step to the 

origin reveals the optimal alignment path (Figure 3B lower). The DTW dis-

tance between the two sequences is then calculated as 

 𝐷𝑇𝑊(𝑥, 𝑦) = √𝐷(𝑚, 𝑛) (3) 

Variants of DTW include the endpoint relaxation, where alignment can start 

at index 𝑝, in either sequence and can finish 𝑞 indexes from the end of either 

sequence with 𝑝, 𝑞 ∈  {0, 1, … , 𝑟}, (e.g. [7] and [10]). It has been suggested 

that better classification performance can be obtained by windowing the 

warping path, disallowing paths that stray far from the diagonal (e.g. [11]). 

This method also reduces the number of calculations needed, thus speeding up 

the classification. Figure 3 shows an example of a DTW D-matrix for two se-

quences and their resulting alignment. The DTW distance in this example is 

𝐷𝑇𝑊(𝑥, 𝑦) = √𝐷(10, 9) = √171 ≈ 13.08. 

 

 

Figure 3 shows both a A) DTW D-matrix using endpoint relaxation r=2 and window 

w=3 and the B) original (upper) and aligned (lower) sequences. 

The DTW algorithm is flexible and can produce degenerate alignments. It is 

therefore important to evaluate appropriate settings for the model constraints 

for each problem (e.g. [12]). 

k-Nearest neighbors 

We have used a k-Nearest neighbor (k-NN) classifier to produce classifica-

tions for new soundings using the DTW distance described in the previous 

section. The k-NN method was first proposed by Fix and Hodges [8], for bi-

nary classification problems using the Euclidean distance as a metric. Figure 
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4A shows how the original definition can be used to decide the class of the 

blue cross, which is set to belong to the majority class for points within a 

given radius. 

 

Figure 4 k-NN classification using A) Euclidean distance in 2D and B) DTW distance 

in 1D. 

If the radius in Figure 4A is chosen so the circle contains 3 neighbors (𝑘 = 3), 

then 2 are red and 1 is green.  The blue cross is then assigned the red class. In-

creasing the radius so that the circle contains 5 neighbors, then 3 are green 

and 2 are red. The blue cross is in this case assigned the green class. 

The same logic can be applied using DTW, as illustrated in Figure 4B.  First 

all curve segments in the training dataset are compared to the blue curve, or-

dered by ascending DTW distance. The decision threshold can be adjusted as 

before. If it is set to contain 3 neighbors (𝑘 = 3), then 2 are red and 1 is green.  

Here the blue curve gets assigned the red class. Rather than adjusting the 

value of the decision boundary (radius or distance in the above examples) in 

k-NN, the neighbors are simply sorted by the chosen measure and the major-

ity class of the k-nearest neighbors is used as the answer. 

3. DATASET REDUCTION 

With the implementation of the DTW algorithm given earlier, the calculations 

are slow. For practical purposes it is desirable to save calculation time by re-

ducing the dataset to representative segments for each class. 

Our initial study agreed with the conclusion in [3], where normalizing the 

push force was found to give a better basis for classification. It is defined as 

 𝑞𝑛 =
F𝐷𝑇

𝐴∙𝜎𝑣0
′ ≈

F𝐷𝑇

𝐴∙𝛾′∙𝑧
 (4) 

where F𝐷𝑇 is the push force, 𝐴  is the drill-bit cross section area, 𝐴 =  .55 ∙
10−3𝑚2. 𝜎𝑉0

′  is the effective vertical stress, 𝑧 is the depth and 𝛾′ is the effec-

tive unit soil weight, which is here set to 𝛾′ = 7𝑘𝑁 𝑚3⁄ . 

The set reduction is implemented by first defining two sets for each soil class. 
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One containing all 𝑞𝑛 curves, 𝑆𝐴, and another empty set, 𝑆𝐵. Members are it-

eratively moved from 𝑆𝐴 to 𝑆𝐵, in each step selecting the one that minimizes 

 𝑑𝑆.𝑖 = ∑ inf{ 𝐷𝑇𝑊(𝑎, 𝑏) | 𝑏 ∈ 𝑆𝐵 }𝑎∈𝑆𝐴  (5) 

for steps 𝑖 = 1,  , … , 𝑛. Figure 5A shows the first 100 steps of the reduction 

for each class. A threshold was set at 𝑡 =  0, where all curves still had mem-

bers and were past their elbow point. It is beyond the scope of this paper to 

discuss model parameter tuning, but the AUCtotal-, F1- and accuracy measures 

are used as described in [13]. As the soil classes are interrelated, predicting 

the nearest neighboring class during validation is counted as the correct an-

swer. Figure 5B is presented to show that all the measures used support se-

lecting the parameters 𝑤 = 𝑟 =  0% of the curve length and 𝑘 = 17. 

 

Figure 5 A) Normalized average distance between all elements in SA to any element in 

SB as a function of the iteration step. B) AUCtotal-, F1 score and classification accuracy 

as a function model parameters k, w and r. 

 

Figure 6 A-C) Reduced training set with 20 representative push force curves for each 

material type. Each material plotted in 1m depth window. The first two curves selected 

for each class in Figure 5A are drawn with thicker lines. 
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4. CLASSIFICATION EXAMPLES 

Two total soundings are selected from the NPRA database to showcase the 

presented model capability in different soil types. Intervals with flushing or 

hammering are washed out as the model is not defined for these phases. 

 

Figure 7 Classification examples using the proposed model with the full- and reduced 

version of the dataset. Time needed to calculate each profile is given in parentheses. 

5. CONCLUSIONS 

This work demonstrated that an SBT classifier for the total sounding can be 

defined with k-NN and the DTW distance using sequences of qn as features. 

This approach shows promise and should be investigated further. 

The k-NN DTW approach should be applicable for other methods as well, 

such as the jb-tot, rotary pressure sounding and cone penetration tests. 

Classification can be significantly sped up using representative datasets for 

each class. Examples are given on classification of soundings for the full- and 

trimmed dataset along with calculation times needed to generate both. 

The quality of machine learning models is fully dependent on the quality of 

the training data. These could be improved using proper estimates of 𝜎𝑣0 and 

𝑢0, rather than a fixed 𝛾′. Efforts could be put into removing outliers or 

curves from improperly performed tests from the training set. 

There is room for improvement on the total sounding method as well.  A fun-

damental method improvement would be to implement a load cell at- or close 

to the tip, thus removing interference from friction against the rod system. 
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